3.7.95 \(\int \frac {(d+e x^2)^2}{\sqrt {a+b \arcsin (c x)}} \, dx\) [695]

3.7.95.1 Optimal result
3.7.95.2 Mathematica [C] (verified)
3.7.95.3 Rubi [A] (verified)
3.7.95.4 Maple [A] (verified)
3.7.95.5 Fricas [F(-2)]
3.7.95.6 Sympy [F]
3.7.95.7 Maxima [F]
3.7.95.8 Giac [C] (verification not implemented)
3.7.95.9 Mupad [F(-1)]

3.7.95.1 Optimal result

Integrand size = 22, antiderivative size = 679 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\frac {d e \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c^3}+\frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^5}+\frac {d^2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}-\frac {d e \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c^3}-\frac {e^2 \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^5}+\frac {e^2 \sqrt {\frac {\pi }{10}} \cos \left (\frac {5 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^5}+\frac {d e \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c^3}+\frac {e^2 \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{4 \sqrt {b} c^5}+\frac {d^2 \sqrt {2 \pi } \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c}-\frac {d e \sqrt {\frac {\pi }{6}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{\sqrt {b} c^3}-\frac {e^2 \sqrt {\frac {3 \pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{8 \sqrt {b} c^5}+\frac {e^2 \sqrt {\frac {\pi }{10}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {5 a}{b}\right )}{8 \sqrt {b} c^5} \]

output
1/80*e^2*cos(5*a/b)*FresnelC(10^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^( 
1/2))*10^(1/2)*Pi^(1/2)/c^5/b^(1/2)+1/80*e^2*FresnelS(10^(1/2)/Pi^(1/2)*(a 
+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(5*a/b)*10^(1/2)*Pi^(1/2)/c^5/b^(1/2)-1/ 
6*d*e*cos(3*a/b)*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2) 
)*6^(1/2)*Pi^(1/2)/c^3/b^(1/2)-1/6*d*e*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcs 
in(c*x))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/c^3/b^(1/2)+1/2*d*e*co 
s(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)* 
Pi^(1/2)/c^3/b^(1/2)+1/8*e^2*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsi 
n(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/c^5/b^(1/2)+1/2*d*e*FresnelS(2^(1/ 
2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/c^3 
/b^(1/2)+1/8*e^2*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2) 
)*sin(a/b)*2^(1/2)*Pi^(1/2)/c^5/b^(1/2)-1/16*e^2*cos(3*a/b)*FresnelC(6^(1/ 
2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/c^5/b^(1/2)- 
1/16*e^2*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(3* 
a/b)*6^(1/2)*Pi^(1/2)/c^5/b^(1/2)+d^2*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*( 
a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/c/b^(1/2)+d^2*FresnelS(2^ 
(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/ 
c/b^(1/2)
 
3.7.95.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.14 (sec) , antiderivative size = 401, normalized size of antiderivative = 0.59 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\frac {i e^{-\frac {5 i a}{b}} \left (-30 \left (8 c^4 d^2+4 c^2 d e+e^2\right ) e^{\frac {4 i a}{b}} \sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c x))}{b}\right )+30 \left (8 c^4 d^2+4 c^2 d e+e^2\right ) e^{\frac {6 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c x))}{b}\right )+e \left (5 \sqrt {3} \left (8 c^2 d+3 e\right ) e^{\frac {2 i a}{b}} \sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i (a+b \arcsin (c x))}{b}\right )-5 \sqrt {3} \left (8 c^2 d+3 e\right ) e^{\frac {8 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {3 i (a+b \arcsin (c x))}{b}\right )-3 \sqrt {5} e \left (\sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {5 i (a+b \arcsin (c x))}{b}\right )-e^{\frac {10 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {5 i (a+b \arcsin (c x))}{b}\right )\right )\right )\right )}{480 c^5 \sqrt {a+b \arcsin (c x)}} \]

input
Integrate[(d + e*x^2)^2/Sqrt[a + b*ArcSin[c*x]],x]
 
output
((I/480)*(-30*(8*c^4*d^2 + 4*c^2*d*e + e^2)*E^(((4*I)*a)/b)*Sqrt[((-I)*(a 
+ b*ArcSin[c*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c*x]))/b] + 30*(8*c^4* 
d^2 + 4*c^2*d*e + e^2)*E^(((6*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gam 
ma[1/2, (I*(a + b*ArcSin[c*x]))/b] + e*(5*Sqrt[3]*(8*c^2*d + 3*e)*E^(((2*I 
)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcSi 
n[c*x]))/b] - 5*Sqrt[3]*(8*c^2*d + 3*e)*E^(((8*I)*a)/b)*Sqrt[(I*(a + b*Arc 
Sin[c*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c*x]))/b] - 3*Sqrt[5]*e*(Sqr 
t[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((-5*I)*(a + b*ArcSin[c*x]))/b] 
 - E^(((10*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((5*I)*(a + 
 b*ArcSin[c*x]))/b]))))/(c^5*E^(((5*I)*a)/b)*Sqrt[a + b*ArcSin[c*x]])
 
3.7.95.3 Rubi [A] (verified)

Time = 1.50 (sec) , antiderivative size = 679, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {5172, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx\)

\(\Big \downarrow \) 5172

\(\displaystyle \int \left (\frac {d^2}{\sqrt {a+b \arcsin (c x)}}+\frac {2 d e x^2}{\sqrt {a+b \arcsin (c x)}}+\frac {e^2 x^4}{\sqrt {a+b \arcsin (c x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {\frac {\pi }{2}} e^2 \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^5}-\frac {\sqrt {\frac {3 \pi }{2}} e^2 \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{10}} e^2 \cos \left (\frac {5 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{2}} e^2 \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^5}-\frac {\sqrt {\frac {3 \pi }{2}} e^2 \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{10}} e^2 \sin \left (\frac {5 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{2}} d e \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{6}} d e \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{2}} d e \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{6}} d e \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c^3}+\frac {\sqrt {2 \pi } d^2 \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } d^2 \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}\)

input
Int[(d + e*x^2)^2/Sqrt[a + b*ArcSin[c*x]],x]
 
output
(d*e*Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqr 
t[b]])/(Sqrt[b]*c^3) + (e^2*Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[ 
a + b*ArcSin[c*x]])/Sqrt[b]])/(4*Sqrt[b]*c^5) + (d^2*Sqrt[2*Pi]*Cos[a/b]*F 
resnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(Sqrt[b]*c) - (d*e* 
Sqrt[Pi/6]*Cos[(3*a)/b]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt 
[b]])/(Sqrt[b]*c^3) - (e^2*Sqrt[(3*Pi)/2]*Cos[(3*a)/b]*FresnelC[(Sqrt[6/Pi 
]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(8*Sqrt[b]*c^5) + (e^2*Sqrt[Pi/10]*Co 
s[(5*a)/b]*FresnelC[(Sqrt[10/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(8*Sqr 
t[b]*c^5) + (d*e*Sqrt[Pi/2]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/ 
Sqrt[b]]*Sin[a/b])/(Sqrt[b]*c^3) + (e^2*Sqrt[Pi/2]*FresnelS[(Sqrt[2/Pi]*Sq 
rt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(4*Sqrt[b]*c^5) + (d^2*Sqrt[2*Pi 
]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(Sqrt[b 
]*c) - (d*e*Sqrt[Pi/6]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[ 
b]]*Sin[(3*a)/b])/(Sqrt[b]*c^3) - (e^2*Sqrt[(3*Pi)/2]*FresnelS[(Sqrt[6/Pi] 
*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/(8*Sqrt[b]*c^5) + (e^2*Sq 
rt[Pi/10]*FresnelS[(Sqrt[10/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[(5*a 
)/b])/(8*Sqrt[b]*c^5)
 

3.7.95.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5172
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x 
] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (G 
tQ[p, 0] || IGtQ[n, 0])
 
3.7.95.4 Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 664, normalized size of antiderivative = 0.98

method result size
default \(\frac {\sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {5}{b}}\, \left (-48 \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {5}{b}}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,c^{4} d^{2}+48 \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {5}{b}}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,c^{4} d^{2}-24 \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {5}{b}}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,c^{2} d e +24 \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {5}{b}}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,c^{2} d e +8 \sqrt {-\frac {3}{b}}\, \sqrt {-\frac {5}{b}}\, \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b \,c^{2} d e -8 \sqrt {-\frac {3}{b}}\, \sqrt {-\frac {5}{b}}\, \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b \,c^{2} d e -6 \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {5}{b}}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,e^{2}+6 \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {5}{b}}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,e^{2}+3 \sqrt {-\frac {3}{b}}\, \sqrt {-\frac {5}{b}}\, \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b \,e^{2}-3 \sqrt {-\frac {3}{b}}\, \sqrt {-\frac {5}{b}}\, \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b \,e^{2}+3 \cos \left (\frac {5 a}{b}\right ) \operatorname {FresnelC}\left (\frac {5 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {5}{b}}\, b}\right ) e^{2}-3 \sin \left (\frac {5 a}{b}\right ) \operatorname {FresnelS}\left (\frac {5 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {5}{b}}\, b}\right ) e^{2}\right )}{240 c^{5}}\) \(664\)

input
int((e*x^2+d)^2/(a+b*arcsin(c*x))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/240/c^5*Pi^(1/2)*2^(1/2)*(-5/b)^(1/2)*(-48*(-1/b)^(1/2)*(-5/b)^(1/2)*cos 
(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b* 
c^4*d^2+48*(-1/b)^(1/2)*(-5/b)^(1/2)*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(- 
1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*c^4*d^2-24*(-1/b)^(1/2)*(-5/b)^(1/ 
2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2) 
/b)*b*c^2*d*e+24*(-1/b)^(1/2)*(-5/b)^(1/2)*sin(a/b)*FresnelS(2^(1/2)/Pi^(1 
/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*c^2*d*e+8*(-3/b)^(1/2)*(-5/b 
)^(1/2)*cos(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c* 
x))^(1/2)/b)*b*c^2*d*e-8*(-3/b)^(1/2)*(-5/b)^(1/2)*sin(3*a/b)*FresnelS(3*2 
^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*c^2*d*e-6*(-1/b) 
^(1/2)*(-5/b)^(1/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*a 
rcsin(c*x))^(1/2)/b)*b*e^2+6*(-1/b)^(1/2)*(-5/b)^(1/2)*sin(a/b)*FresnelS(2 
^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*e^2+3*(-3/b)^(1/ 
2)*(-5/b)^(1/2)*cos(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*a 
rcsin(c*x))^(1/2)/b)*b*e^2-3*(-3/b)^(1/2)*(-5/b)^(1/2)*sin(3*a/b)*FresnelS 
(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*e^2+3*cos(5* 
a/b)*FresnelC(5*2^(1/2)/Pi^(1/2)/(-5/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*e 
^2-3*sin(5*a/b)*FresnelS(5*2^(1/2)/Pi^(1/2)/(-5/b)^(1/2)*(a+b*arcsin(c*x)) 
^(1/2)/b)*e^2)
 
3.7.95.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((e*x^2+d)^2/(a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.7.95.6 Sympy [F]

\[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\int \frac {\left (d + e x^{2}\right )^{2}}{\sqrt {a + b \operatorname {asin}{\left (c x \right )}}}\, dx \]

input
integrate((e*x**2+d)**2/(a+b*asin(c*x))**(1/2),x)
 
output
Integral((d + e*x**2)**2/sqrt(a + b*asin(c*x)), x)
 
3.7.95.7 Maxima [F]

\[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{2}}{\sqrt {b \arcsin \left (c x\right ) + a}} \,d x } \]

input
integrate((e*x^2+d)^2/(a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")
 
output
integrate((e*x^2 + d)^2/sqrt(b*arcsin(c*x) + a), x)
 
3.7.95.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.80 (sec) , antiderivative size = 975, normalized size of antiderivative = 1.44 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\text {Too large to display} \]

input
integrate((e*x^2+d)^2/(a+b*arcsin(c*x))^(1/2),x, algorithm="giac")
 
output
-sqrt(pi)*d^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/ 
2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(c*(I*sqrt(2)* 
b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - sqrt(pi)*d^2*erf(1/2*I*sqrt(2)*s 
qrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)* 
sqrt(abs(b))/b)*e^(-I*a/b)/(c*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(ab 
s(b)))) + 1/2*sqrt(pi)*d*e*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b 
) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sq 
rt(6)*sqrt(b) + I*sqrt(6)*b^(3/2)/abs(b))*c^3) - 1/2*sqrt(pi)*d*e*erf(-1/2 
*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsi 
n(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(c^3*(I*sqrt(2)*b/sqrt(abs(b)) + sqr 
t(2)*sqrt(abs(b)))) - 1/2*sqrt(pi)*d*e*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x 
) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)* 
e^(-I*a/b)/(c^3*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + 1/2* 
sqrt(pi)*d*e*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) + 1/2*I*sqrt 
(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*sqrt(b) 
 - I*sqrt(6)*b^(3/2)/abs(b))*c^3) - 1/16*sqrt(pi)*e^2*erf(-1/2*sqrt(10)*sq 
rt(b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(10)*sqrt(b*arcsin(c*x) + a)*sqr 
t(b)/abs(b))*e^(5*I*a/b)/((sqrt(10)*sqrt(b) + I*sqrt(10)*b^(3/2)/abs(b))*c 
^5) - 1/8*sqrt(pi)*e^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs 
(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(c...
 
3.7.95.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \arcsin (c x)}} \, dx=\int \frac {{\left (e\,x^2+d\right )}^2}{\sqrt {a+b\,\mathrm {asin}\left (c\,x\right )}} \,d x \]

input
int((d + e*x^2)^2/(a + b*asin(c*x))^(1/2),x)
 
output
int((d + e*x^2)^2/(a + b*asin(c*x))^(1/2), x)